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 SUMMARY 

This paper presents data from a series of laminar-flow flight tests at NASA Dryden Flight Research Center on 
the F-15B. It is shown that periodic discrete roughness elements near the leading can increase the laminar 
flow region at both supersonic and subsonic flight Mach numbers. Infra-red thermography was used to 
visualize laminar-turbulent transition. Although the experiment was designed for Mach 1.85, it was possible 
to obtain data at other Mach numbers as well. The results at Mach 1.85 and 0.911 are presented. 
Unfortunately, flowfield nonuniformities limited the Mach number range and the extent of observed laminar 
flow. The results are encouraging that periodic discrete roughness elements near the leading edge can be 
used as a laminar flow control technique. 

1.0 INTRODUCTION 

The present paper addresses laminar flow control (LFC) in swept-wing boundary layers in both high subsonic 
and supersonic flight. The duration of long-range supersonic flight and high-altitude UAV surveillance 
aircraft depends, of course, on the drag budget. Achieving laminar flow on 70 %– 80% of the wings, usually 
results in an overall drag reduction of 20 %– 25% and hence, extends the range or loiter time of these aircraft. 

Swept-wing boundary layers are subject to crossflow instabilities that do not lend themselves easily to 
prediction and control [1,2]. Delaying the pressure minimum and accelerating the boundary layer stabilizes 
streamwise instabilities (T-S waves) but destabilizes crossflow waves. In low-disturbance environments, one 
can expect that stationary crossflow waves will dominate. In this case, an innovative technique using periodic 
discrete roughness elements (DRE) has been shown to stabilize stationary crossflow waves [3, 4, 5] in 
lowspeed flows. 

The basic idea is as follows. The crossflow instability has a frequency response that includes both traveling 
and stationary waves. In low-turbulence environments, the dominant mode appears as stationary waves that 
are excited by micron-sized surface roughness [2]. These stationary waves are in the form of streamwise-
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oriented, co-rotating vortices. Given a random roughness distribution of a normal surface, one observes 
stationary waves at a wavelength predicted by linear theory to be the most unstable wavelength. This critical 
wavelength, critλ , will grow and also generate harmonics in wavenumber space ( / 2, / 3,etccrit critλ λ ) but not 
subharmonics ( 2 ,3 ,crit crit etc.λ λ ). Since these are stationary streamwise vortices, the weak rotational 
components convect streamwise momentum and modify the mean flow in a nonlinear sense. This modified 
mean flow has different stability characteristics than the unmodified flow. If one introduces a subcritical 
control wavelength, cntrlλ , where the control wavelength is about 50% - 60% of critλ , stationary waves will 
grow at this wavelength and inhibit the growth of the most unstable stationary disturbance. Since the mean 
flow is now spanwise periodic at this wavelength, traveling disturbances are also restricted to less unstable 
modes. The comparisons between experiment [3], nonlinear parabolized stability equations (NPSE) [4], and 
direct numerical simulation (DNS) [5] show outstanding agreement. The airfoil design process using 
distributed roughness is given by Saric & Reed [6]. Since the basic background material on crossflow-induced 
transition is in references [1, 2], the details of the laminarization technique are in references [3, 4, 5], and the 
implementation and airfoil design process is given in [6, 7], there is no need to repeat the standard references. 

2.0 DESCRIPTION OF THE FLIGHT EXPERIMENT 

The flight experiment utilizes a wing model mounted underneath the F-15B aircraft at NASA Dryden Flight 
Research Center (DFRC). The model, shown in Figure 1, is a trapezoid with a 30º leading edge sweep and a -
15º trailing edge sweep. The profile is a modified bi-convex with a mid-span chord of 0.762 m (2.5 ft). Before 
modification, this model was first tested by Richard Tracy and his colleagues at Reno Air to achieve laminar 
flow with the 15º leading edge sweep. 

 

Figure 1: 30º leading-edge-sweep model under the F-15 
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The flight objective is to achieve Mach 1.85 and a unit Reynolds number of 13.1x106/m (4x106/ft) for a 
nominal chord Reynolds number of 10x106. The aircraft was limited to a maximum dynamic pressure ( maxq ) 
of 1200 psf. The designed flight trajectory is shown in Figure 2. Some modifications were incorporated as 
temperature conditions changed throughout the year and occasionally we were unable to achieve maxq . 
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Figure 2: Flight trajectory 

Complete Euler calculations were done on the aircraft/model at flight Mach numbers. The pressure contours 
are shown in Figure 3. There is some spanwise nonuniformity but the model seems to be shock free at this 
Mach number. 

Figure 3: Pressure contours from Euler calculations of F-15B at Mach 1.85 
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The most revealing result from these calculations is the visualization of a bleed-over shock from the pylon that 
intersects the model when the Mach number is less than 1.8. This shock trips the boundary layer making LFC 
ineffective. All of the supersonic measurements had to be conducted at Mach numbers greater than 1.8. The 
calculations further show that there is some aircraft induced downwash that changes the effective sweep angle 
across the span of the model. Thus the local flow sweep angle varied from approximately 35 degrees at the 
root to 30 degrees at the tip. 

The model chord varies from 1.2 m (47.36 in) at the root to 0.55 m (21.79 in) at the tip. The nominal chord is 
0.9 m (35.58 in), the span is 0.78 m (30.75 in), the thickness is 3.4%, and the nose radius is 5 mm (0.2 in). The 
attachment line Reθ is always less than 70. The pressure distributions from the Euler calculations are shown in 
Figure 4. 
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Figure 4: -CP distribution at three span locations 

Note the suction peak near the leading edge that seems to be larger inboard. This in fact destabilizes the 
boundary layer in a manner that was not accounted for in the design using FLO-87. The stability calculations 
(Figures 5 and 6) were actually done using the pressures calculated in Figure 4. 

Dryden 40kft, midspan
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Figure 5: N-factor calculations at mid-span, 40 kft, and, M = 1.85 
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The N-factor calculations of Figure 5 are for stationary crossflow vortices at the wavelengths indicated in the 
right-hand column. It shows large early growth of the 0.8 and 1.0 mm waves. This is unexpected from the 
earlier design points because the aircraft interference was not taken into account. It does appear that the 4 mm 
wave is the most unstable and one that would lead to transition. 

Figure 6 shows the N-factors calculations in the outboard region. Here the initial growth of the short waves, 
0.6 mm to 1.0 mm, is reasonable and more like the design case. We still have the 4 mm wave as the most 
unstable (not shown in Figure 6) and the 2 mm wave for control. The N-factors of Figure 6 increase as maxq  is 
reached at 35 kft. 

 

Dryden 40kft, outboard
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Figure 6: Outboard N-factor calculations at 40 kft, and, M = 1.85 

3.0 RESULTS 

Infra-Red Thermography (IRT) is used as the primary instrumentation for detecting transition location. A 
limited number of surface pressure and temperature measurements are also recorded. The measured and 
calculated pressures agreed but there were not enough pressure ports to resolve the early suction peak. 
Unfortunately, we were unable to implement the ASU-designed freestream fluctuating pressure measurement. 

3.1 Subsonic Results 
The IR camera was operative throughout the flight trajectory so that selected subsonic points could also be 
used for data. As mentioned earlier, no supersonic results were valid for mach numbers less than 1.8. The 
criteria used for choosing subsonic data was that the model was not thermally saturated and conditions were 
held for at least two seconds. The principal test conditions were: 

Mach = 0.911; Altitude = 9245 m (30,417 feet); Temperature = 235 K (-36 F) 
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unit Reynolds number = 8.1x106/m (2.46x106/ft); mid-span chord Reynolds number = 6.15x106

The periodic discrete roughness elements (DRE) had the following characteristics: diameter = 1 mm; height = 
6 µm (0.00024 inch); spacing = 4 mm. Figure 7 is a IRT image showing full-chord laminar flow under the 
stated conditions. In Figure 7, the light area is laminar, the dark area is turbulent. The two turbulent wedges at 
1/3 and 2/3 span are due to out-gassing pressure ports. The boundary layer is otherwise laminar. In the case 
without the DRE, transition was observed (and also predicted) to be caused by T-S waves at 70% chord 
because of the very sharp pressure recovery. The DRE spacing was the critical spacing for Mach = 1.85 but at 
the stated conditions, this crossflow wavelength grew only modestly. The growth of the stationary crossflow 
wave did however modify the meanflow thereby restricting the growth of the T-S wave. Thus, the boundary 
layer remained laminar through the pressure minimum. It appears therefore that the distributed roughness can 
also favorably influence traveling T-S waves as well by making the basic state spanwise periodic. This offers 
an unexpected benefit of using DRE. 

 

 

Figure 7: R Image of model at M = 0.911 Conditions stated in text. 
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3.2 Supersonic Results 
A total of 11 flights were scheduled from spring 2002 through the summer of 2003. Of these, 6 were aborted 
for various technical reasons. The data presented here are from the summer of 2003. Additional tests were 
planned but funding issues terminated the program. Figure 8 contains a composite of the IRT results from a 
typical supersonic flight. In this case, laminar flow is dark and turbulent flow is light. The principal test 
conditions are: Mach = 1.85; Altitude = 12 km (40 kft); unit Re = 11.8 x 106/m (3.6 x 106/ft); mid-span chord 
Rec =9 x 106
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Figure 8: Supersonic IRT Results. Upper figure is entire model with no control roughness. The lower 
two figures are enlargements of the outboard region. 

Close examination of the outboard region showed an increase in laminar flow when 0.75 mm diameter DRE 
were placed on 2 mm centers. The most unstable wave was at 4 mm. The DRE height was 6 microns. 
However, control was observed only in the outboard region. The higher than anticipated inboard suction peak 
and sweep angle obviated the control inboard. The suction peak also caused an increased sensitivity to 
roughness nonuniformities. Because of the unusually high temperatures during the summer of 2003, it was not 
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possible to achieve the design chord Reynolds number. Typically, Mach 1.85 was achieved at 40 kft only at 
the end of the supersonic corridor and the downhill portion of the trajectory to 35 kft could not be obtained. 

4.0 SUMMARY 

The chord Reynolds numbers for the supersonic case are lower than most supersonic applications, but 
demonstrate the possibility of the DRE laminarization concept in supersonic flow (higher-Reynolds-number, 
wind-tunnel results are given in [6]). The difficulties with this experiment demonstrate the need to always do a 
full computation of the flowfield. The underside of the F-15B did not have the anticipated uniform flowfield. 
Had this been known early enough, the model would have had a much different design. 

The chord Reynolds numbers in the high subsonic case is representative of high-altitude UAV surveillance 
aircraft and thus, these data have a direct application. These results encourage additional flight-test work with 
DRE in both T-S and crossflow dominated regimes. Additional wind-tunnel experiments in the case of 
crossflow must be limited to facilities with extremely low turbulence levels. 
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